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Abstract—A novel approach is used to derive a completely
analytical model of a six pulse line commutated converter based
HVDC system. The system is split into two subsystems and is
then solved individually. Therefore each period of a subsystem
is divided into six intervals. Hence it is only necessary to solve
one period analytically for the state of commutation as well as
for the state of two-valve conduction. All other solutions are
then deduced from the original solution with a simple rotation.
Afterwards the subsystems are connected and the dependencies
of each other are taken into consideration. The space vector
transformation is used to split the system into independent
subsystems (two for the state of commutation and one for the
state of two-valve conduction), which allows to obtain a closed
form solution. Accuracy of the model is approved by comparison
with electromagnetic transient models.

Index Terms—Analytical models, HVDC transmission, Power
system modeling, Space vector transformation.

I. INTRODUCTION

A reliable, economic and environmental friendly supply
of electric power is essential for every developed country.
The reduction of CO2 emissions as well as the renunciation
of nuclear power are the current challenges for the German
transmission system. More and more renewable energy sources
like onshore and offshore wind farms, solar power and biomass
power stations have to be integrated in the power system.
Obviously the load centers are situated in many cases far
away from the generation sites. The high voltage DC (HVDC)
transmission is the ideal technology to deal with this task [1].

In the last decades, many advancements in power electronics
have been achieved. This is the driving force behind the great
importance of HVDC systems in power systems nowadays.
HVDC allows power transport over long distances with low
losses. Developing countries like India [2] and China [3] with
a fast growing power capacity are installing more and more
HVDC systems for long distance bulk power transmission. But
also in relatively small countries like Germany, HVDC systems
are in planning to transport renewable generated power, e.g.
from offshore wind farms, from the north to the industrial
consumers in the south [4].
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Fig. 1: HVDC splitting with dependent generators

Recently a lot of development has been achieved in the
area of voltage sourced converter (VSC) based HVDC systems
[1]. But nevertheless line commutated converter (LCC) based
HVDC systems are still the best choice for bulk power trans-
mission due to their high current and voltage capability [3]. To
be able to design the various subsystems of an HVDC system
efficiently and accurately, proper models of these switching
systems are needed. Such models are furthermore required
to study the considerable interaction with the AC grid in
power system analysis. In addition a deeper understanding
about functioning of an HVDC system can be obtained by
recognizing the fundamental correlations in the models for
these power electronic based systems.

Analytical models have been proposed in literature for LCC
based HVDC systems [5]. However the approach in this paper
is more general and more systematic. The model is not only
valid for the steady state, but it can also be used for transient
analysis. Furthermore symmetries in the three phase, six pulse
converter are used to minimize redundancies in the solutions.
The symmetrical three phase system can be simplified with
the use of the space vector transformation [6] and the 60◦

symmetry of the converter can be used to refer the solutions
for each state to a fundamental prototype. The rectifier and the
inverter are solved independently and the solutions are com-
bined afterwards as depicted in Fig. 1. To verify the approach,
the analytical model has been implemented in MATLAB R©

and will be compared with already existing numerical models
in SIMULINK R©.



II. ANALYTICAL MODELLING

In order to provide the analytical solution of the HVDC
system, the equations of state have to be derived. To be able
to describe the network analytically, some simplifications have
to be introduced. The thyristors are regarded ideal and lossless,
which means that they are free running or shorted. If a thyristor
is free running, its admittance is equal to zero. If it is shorted,
the impedance is equal to zero. Furthermore the source is
considered ideal and stiff and all impedances are regarded
ohmic and inductive.

In the next sections, a rectifier and an inverter are described
analytically and afterwards both are combined to an HVDC
system. The HVDC system shall be described with space vec-
tor and zero-sequence component and be solved independently
in the real and imaginary part network.

In order to be able to describe the equal phase displacement
of a three phase system, the spin operator a as shown in (1)
is defined.

a = ej120◦ (1)

The space vector v and the corresponding zero-sequence
component v0 are defined in (2), where gn are the original
values of the three phase system.2v0

v
v∗

 =
2

3

1 1 1
1 a a2

1 a2 a

g1g2
g3

 (2)

upB

upA

upC

Zk

Zk

Zk

iA

iB

iC

uA

uB

uC

T1 T3 T5

T4 T6 T2

id

Zd

ud

uInverter

(a) Rectifier

upB

upA

upC

Zk

Zk

Zk

iA

iB

iC

uA

uB

uC
T1T3T5

T4 T6 T2

id

uInverter

(b) Inverter

Fig. 2: Equivalent circuits of a split HVDC system
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Fig. 3: Rectifier in COM123

The rectifier and the inverter are connected to the grid
through a transformer, which is represented by a voltage source
in series with a short circuit impedance (Thévenin equivalent).
The regarded source is a symmetrical, three phase synchronous
voltage as defined in (3). The grid short circuit impedance is
represented by Zk and the DC side of the HVDC system is
modeled with a series impedance Zd as depicted in Fig. 2.

up =
2

3

(
upA + aupB + a2upC

)
=

=
2

3

(
Ûp cos(ωt) + Ûpej120◦ cos(ωt− 120◦)+

+ Ûpej240◦ cos(ωt− 240◦)
)
= Ûpejωt

(3)

A. Rectifier

The investigated circuit of the rectifier is shown in Fig. 2a.
During the operation of the rectifier, two states need to be
taken into consideration. In the state of commutation (COM),
the current is redirected from one valve to another. Therefore
three valves are conducting current at the same time. Opposite
to this, in the state of two-valve conduction (TVC) only two
valves are conducting current simultaneously. In normal mode
of operation, the state of COM is always started externally with
a firing pulse and the state of TVC starts once the current has
completely commutated from one valve to another.

1) State of commutation: To be able to describe the state of
COM easier, a commutation current ik is used as defined in [6,
p. 5 et seq.]. ik is half of the difference between the current in
the valve with decreasing current (down commutation) and the
valve with increasing current (up commutation). This relation
can be written mathematically as shown in (4). The direction
of the positive current is given through the sources of the three
phase system as depicted in Fig. 2a.

ik =
1

2
(iValveDown − iValveUp) (4)

The derivation of the equations of state shall be demon-
strated by a specific example. The state of COM123 for the
rectifier will be discussed as depicted in Fig. 3. In this state the
current of the rectifier is commutating from valve 1 to valve
3. The equations for all other states for both the rectifier and
the inverter can be obtained similarly.



The conditions perturbing the symmetrical operation for the
currents are defined as follows:

id = iValve1 + iValve3 = iA + iB ,

2ik = iValve1 − iValve3 = iA − iB ,

iC = iValve2 = −id .
(5)

iA and iB can be explicitly written as:

iA =
1

2
(id + 2ik) =

id
2
+ ik ,

iB =
1

2
(id − 2ik) =

id
2
− ik .

(6)

The space vector can be calculated with the currents of all
three phases:

i123 =
2

3

(
iA + aiB + a2iC

)
=

=
2

3

(
id
2
+ ik + a

(
id
2
− ik

)
+ a2 (−id)

)
=

= −a2id +
2

3
(1− a) ik = ej60◦id +

2√
3

e−j30◦ik .

(7)

The two parts of the space vector i are orthogonal to
each other (=̂ phase displacement is 90◦). Thus they can be
separated into two independent networks with a rotation by
−60◦:

i123e−j60◦ = ej0◦id +
2√
3

e−j90◦ik = id − j
2√
3
ik ,

Re
{
i123e−j60◦

}
= id ,

Im
{
i123e−j60◦

}
= − 2√

3
ik .

(8)

The conditions perturbing the symmetrical operation for the
voltages are defined as follows:

uA = uB ,

uC = −uInverter − Zdid + uB .
(9)

The space vector of the voltage can be calculated with the
voltages of all three phases:

u123 =
2

3

(
uA + auB + a2uC

)
=

2

3
(uA + auA+

+ a2 (−uInverter − Zdid + uA)
)
= −2

3
a2·

· (uInverter + Zdid) = −
2

3
ej240◦ (uInverter + Zdid) .

(10)

As the space vector of the currents has been rotated, the
space vector of the voltages must be rotated, too:

u123e−j60◦ = −2

3
ej180◦ (uInverter + Zdid) =

=
2

3
(uInverter + Zdid) .

(11)

The equivalent circuit diagrams for the state of COM
are depicted in Fig. 4 for the general case. The individual
commutation states differ only in a phase rotation indicated
by the rotation index n. Both networks are linear differential
equations of first order and can be solved analytically. The
closed form solutions for the DC current id and the the
commutation current ik are listed in (13). In order to simplify
the solutions, some substitutions are used:

R := Rk +
2

3
Rd ,

X := Xk +
2

3
Xd ,

φ := ϕ− 60◦n .

(12)

For the purpose of calculating the phase currents out of the
state variables, the space vector is composed with the right
rotation angle according to the current commutation state. The
phase currents can then be obtained with the use of the inverse
space vector transformation.

id = Ûp
cos
(
ωt+ φ− atan

(
X
R

))
√
R2 +X2

− Ûpe−
R
X ω(t−t0)

−
cos
(
ωt0 + φ− atan

(
X
R

))
√
R2 +X2

− 2

3X
e−

R
X ωt·

·
∫ ωt

ωt0
uInvertere

R
X ωτ d(ωτ) + id(t0) e−

R
X ω(t−t0) ,

ik = −
√
3

2
Ûp

sin
(
ωt+ φ− atan

(
Xk
Rk

))
√
R2

k +X2
k

+

√
3

2
Ûp·

·
sin
(
ωt0 + φ− atan

(
Xk
Rk

))
√
R2

k +X2
k

e−
Rk
Xk
ω(t−t0)+

+ ik(t0) e−
Rk
Xk
ω(t−t0) ,

i =

(
id − j

2√
3
ik

)
ej60◦n

(13)

2) State of two-valve conduction: For the state of TVC,
there is only one equivalent circuit (Fig. 5) as the commutation
current is zero per definition. The solution for the DC current
id is shown in (15). The space vector for this state only
depends on the DC current and on the rotation index n
according to the regarded TVC state. As for the state of COM,
again some substitutions are used in order to be able to write
the solutions in a compact manner:

R := Rk +
1

2
Rd ,

X := Xk +
1

2
Xd ,

φ := ϕ− 60◦n .

(14)
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2√
3
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(15)

B. Inverter

The inverter is regarded as depicted in Fig. 2b. The ana-
lytical characterization is similar as for the rectifier, but as
a current source instead of a voltage source is used for the
model, the system becomes easier to analyze. The DC current
id is constant for both the COM and the TVC states. Therefore
only one analytical solution for the commutation current ik in
the state of COM has to be derived.
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Fig. 6: Space vector equivalent circuits of an inverter in state of commutation
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1) State of commutation: The current ik flows in the
imaginary part network for the state of COM as depicted
in Fig. 7. The network is again a linear differential equation
of first order and can be solved analytically. The solution is
listed in (16) together with the composition rule for the space
vector. The substitution for the angle φ of (12) is again used
to simplify the solution.

ik =

√
3

2
Ûp

sin
(
ωt+ φ− atan

(
Xk
Rk

))
√
R2

k +X2
k

−
√
3

2
Ûp·

·
sin
(
ωt0 + φ− atan

(
Xk
Rk

))
√
R2

k +X2
k

e−
Rk
Xk
ω(t−t0)+

+ ik(t0) e−
Rk
Xk
ω(t−t0) ,

i =

(
id − j

2√
3
ik

)
ej60◦n

(16)

2) State of two-valve conduction: The solution for the state
of TVC is simple as the network consists only of one path with



TABLE I: Mapping table

n 0 1 2 3 4 5

Rect. COM COM612 COM123 COM234 COM345 COM456 COM561

Rect. TVC TVC23 TVC34 TVC45 TVC56 TVC61 TVC12

Inv. COM COM345 COM456 COM561 COM612 COM123 COM234

Inv. TVC TVC56 TVC61 TVC12 TVC23 TVC34 TVC45

a current source in it. Hence the current is equal throughout
the circuit and the according space vector can be built like
shown in (17).

i = j
2√
3
idej60◦n (17)

Now the solutions for all possible states of an HVDC system
during normal mode of operation have been derived. In order
to verify the approach, a time domain simulation shall be
implemented. Therefore the transitions between the different
states have to be analyzed in advance.

III. IMPLEMENTATION

The state transition diagram is shown in Fig. 8. In normal
mode of operation, the transition will always occur either
from one state of COM to the next state of COM or to an
intermediate state of TVC. One such transition is shown in
orange as an example in the transition diagram. At first the
converter is in the state of TVC23, which means that valve 2
and valve 3 are conducting. Now the commutation to valve 4
is initiated by a firing impulse. Therefore the converter enters
the state of COM234. In order to obtain the right solutions for
that state, a rotation by -120◦ is needed. After the current has
fully commutated, the converter shifts to the state of TVC34.
According to the transition diagram, a rotation by +60◦ is
needed. To sum up the example, one can say that a rotation
by -120◦ has to be performed to shift from a state of TVC to
the next state of COM, and a rotation by +60◦ is needed to
shift from there to the next state of TVC. The example is also
illustrated in (18).

TVC23 n+=2
===⇒ COM234 n−=1

===⇒ TVC34 (18)

As the inverter can be seen as a rectifier flipped by 180◦

along the horizontal axis, one can easily expect that also the
solutions for the inverter are phase shifted by 180◦. So for
example the phase angle for the state of COM123 is -60◦ for
the rectifier and +120◦ for the inverter. All states for both the
rectifier and the inverter with their given rotation index n are
listed in TABLE I.

The flowchart of the program is depicted in Fig. 9. The pro-
gram starts with the definition of various states of the HVDC
system and of the simulation variables itself. Afterwards the
main loop is entered and is iterated until the simulation
time fulfills the stop condition. At first the solutions for the
rectifier are calculated dependent on its state (TVC or COM).
Therefore the solution of the inverter of the previous iteration
step has to be taken into consideration because both converters
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Fig. 8: State transition diagram

TABLE II: Parameter set of regarded HVDC system

f 50 Hz
Ûp 163.3 kV

αRectifier 5◦

αInverter 160◦

Rk 0.35 Ω

Lk 11.1 mH
Rd 0.1 Ω

Ld 85 mH

are connected as shown in Fig. 1. After that the inverter is also
calculated on the basis of its state (TVC or COM). Here the
solution of the rectifier of the current iteration step is needed,
too, due to the interconnection of both converters. As all states
have been calculated, the transition is checked both for the
rectifier and the inverter. It is determined if a new COM or
TVC state starts either in the rectifier or in the inverter. Once
all calculations are done, the program puts the simulation data
in appropriate form and the output is generated.

IV. RESULTS

The results of the analytical model in MATLAB R© and the
electromagnetic transient (EMT) model in SIMULINK R© using
the SimPowerSystems toolbox shall be compared. A common
parameter set for a back-to-back HVDC system has been used
for all following simulations. The most important values are
listed in TABLE II. This realistic set has been taken over from
[7, p. 3], nevertheless it has been slightly adopted to get more
informative results.

The observed simulation period is 200 ms. Each simulation
starts firing the valves at 20 ms. The currents of the rectifier
are depicted in Fig. 10. These currents are shown in more
detail for the start-up period in Fig. 11 for the rectifier and
in Fig. 12 for the inverter. The output voltage of the rectifier
for the analytical model and the EMT model is compared in
Fig. 13 for the start-up period.
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Fig. 9: Flow chart of time domain simulation

In order to analyze the difference of both simulations more
in detail, the deviation from each other for the DC current id
is depicted in Fig. 14. The difference is calculated according
to (19). It shows that the maximum deviation is way less than
one per mille, which should be accurate enough for most cases
of application.

δ =
id − id, EMT

max(id, EMT)
(19)

V. CONCLUSION

With this model detailed analyses of LCC based HVDC
systems in power system studies are now possible. As closed
form solutions have been found for the state of COM as well
as for the state of TVC, a highly accurate simulation in the
time domain with very less computational effort can be carried
out. Not the minimum time step like for numerical simula-
tions is important for the accuracy, but instead the number
of switching points (transition of states) which have to be
detected. Furthermore basic understanding of the function of
an HVDC system can be obtained by the analytical solutions.
The insights for the six pulse system can easily be adopted to
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different configuration, e.g. a twelve pulse HVDC converter
can be regarded as two six pulse converters in series for which
analytical solutions have been derived in this paper.
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